
ESUP-Portail: a pure WebDAV-based Network Attached Storage

Pierre Gambarotto *, Pascal Aubry †

* ENSEEIHT, National Polytechnic Institute of Toulouse, France
pierre.gambarotto@enseeiht.fr

† IFSIC, University of Rennes 1, France

pascal.aubry@univ-rennes1.fr

Abstract

ESUP-Portail ESUP-Portail is a consortium of French
Universities. Its goal is to provide a complete and open
solution to Universities and University-level colleges who
wish to offer integrated access to their services and
information for their students and staff. This includes user
data storage and many applications (such as CMS) also
needing storage.

We present the characteristics needed for such a system, in
terms of access, security, ease of use and functionalities. The
WebDAV protocol and its extensions are overviewed, with
pro and cons detailed. We finally show the architecture of the
planned system.

Keywords: distributed storage, WebDAV, access control.

1 Why a new storage solution?

The ESUP-Portail [1] software, when completed, will offer:
 Basic web applications (such as webmail, forums,

agenda, CMS, etc.);
 More specific ones (mark reports, accounting,

registration, etc.);
 Data storage for users.

At the end of the project, each user will be able to access his
storage area from anywhere (school, home, cybercafés, etc.).
As it is also accessed by many applications of the ESUP-
Portail digital workspace, the storage area is a pivot of the
project.

1.1 Which protocol for data sharing?

One way widely adopted is to set up VPNs (Virtual Private
Networks), and continue to use existing protocols (NFS,
CIFS, Netware, etc.) for data sharing. When this solution is
acceptable when dealing with some limited populations, it is
absolutely unconceivable when dealing with tens of
thousands students.

New protocols must be considered, and one comes out of the
crowd: based on HTTP, WebDAV [2] is naturally well-suited
for internet roaming users. It is an official standard, broadly
implemented.

1.2 Requirements for the ESUP-Portail storage
area

1.2.1 Clients
Users will use several clients to access their data from
anywhere on the internet:

 CGI applications, possibly integrated into a portal
(uPortal is the base entry-point of the ESUP-Portail
workspace);

 Heavyweight interfaces, such as java/swing applets;
 Graphical file-managers, integrated into an operating

system (Windows explorer, Mac OS X, Unix/Gnome
Nautilus, etc.);

 Any other application.

trusted network

physical
media

storage area

trusted
application

untrusted
application

trusted
O.S.

untrusted
O.S.

Figure 1: The clients of the storage area

These clients, depending on the way they are trusted, will be
imposed different security strategies.

1.2.2 Basic features
The storage area must at least offer the following features:
 Each user must be able to access his/her own

documents;
 Each user must be able to set access conditions, to

permit/forbid others to access his/her documents. Access
rules can depend on an external service, in order to
define groups of people;

 The access protocol for users must be WebDAV.
WebDAV should also be used by all the clients of the
digital workspace accessing the storage area, i.e.
applications and operating systems (trusted or not
trusted).

1.2.3 Extended features
A document should not just consist of a file (data), but also of
a set of properties (owner, access rules, author, last date of
modification, version, etc.). The properties should be easily
accessed and modified by users, through as many clients as
possible. Moreover, the set of properties must be easily
extended; additional administrator-defined properties can
have unlimited usages, such as:

 One of the ESUP-Portail is INJAC [3], a Content
Management System, which transforms documents to
display them; the way they are displayed could depend
on a specific property, e.g. the type of the documents.

 Properties can represent use-by dates, after which
documents should not be readable anymore.

The storage engine (serving the physical storage system)
should provide indexing and searching features, on the
whole storage area, or just a part of it.

To summarize, the storage engine must allow controlled
read/write access to files (file data) and properties. The access
must be controlled by the authentication of the client user,
and depend on his identification (who is Mr Doe?) and his
profile (what can Mr Doe do?).

At least, the storage engine should be able to use external
services, especially for authentication and access control.

1.3 Any existing solution?

Some hardware constructors (EMC, Network Appliance)
already offer ready-to-use multi-protocol (NFS, CIFS, even
WebDAV) NAS solutions, but none is adapted to the ESUP-
Portail project. Indeed, WebDAV support is always limited
(to RFC 2518, sometimes with authentication against LDAP
or Active Directory), when HTTP extensions are needed.
Moreover, commercial solutions are not opened enough to
accept external plug-ins (especially for authentication and
authorizations).

This observation led us to develop our own storage solution,
which we present in this paper.

At first, we will recall the basics of WebDAV, and its
interesting extensions. Then we will describe the software
architecture of the ESUP-Portail storage system.

2 The WebDAV protocol

2.1 Generalities

WebDAV is an extension to HTTP/1.1, which initial goal
was to permit remote editing through HTTP. To do so,
WebDAV adds the following concepts:

 Documents are no longer data, but also metadata, called
properties. The value of these properties can be
controlled by the server, or enforced by clients’ requests.
A property can be used to store information about the
associated resource, for instance the author or the last

date of access. Technically, a property is just a (name,
value) pair linked to a resource. One can use properties
to manage and search a set of resources. Properties can
also be seen as an extension to HTTP Headers, also
expressed as a (name, value) pair, but as explained below
are expressed in an XML form.

 A resource can be locked by users. Access to resources
can be restricted by locks.

 Resources can be gathered into collections, much like
files are gathered into directories within file systems. A
collection is itself a resource, and thus can be moved,
copied, deleted like another resource.

With the proper configuration, a WebDAV server can mimic
a regular file system, thus providing true remote editing of
resource, much like other distributed file systems, like NFS or
CIFS.

Security and authentication are handled by the inherited
HTTP. For instance, Basic or Digest authentications schemas
can be used two schemas of authentication are available:
Basic and Digest. WebDAV nevertheless recommends that
Basic authentication be used together with SSL/TSL, to
prevent password sniffing.

2.2 HTTP add-ons

The add-ons to HTTP to handle the new concepts described
in the previous paragraph are new methods, headers, and
error and status codes.

The most visible change is the introduction of an XML
format to encode request and response bodies. With
HTTP/1.1, information is passed using headers. XML has
several advantages on HTTP headers:

 With an XML block, things concerning properties can be
separated things concerning the request/response (still
located in the headers.

 XML support multiple character sets and thus is adapted
to internationalization.

 XML namespaces (RFC 2396) are used in WebDAV to
achieve uniqueness of property names. Two properties
can thus have the same name in two different
namespaces.

New methods are:

 PROPFIND/PROPMATCH: respectively to get/set a
property on a resource. Arguments, as well as return
values, are presented into an XML block.

Here is an example of a PROPFIND request:

PROPFIND /file HTTP/1.1
Host: doc.domain.org
Content-type: text/xml; charset="utf8"
Depth: 0
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8"?>
<D:propfind xmlns:D="DAV:">
 <D:prop xmlns:R="http://doc.domain.org/collec/">
 <R:author/>
 <R:title/>
 </D:prop>
</D:propfind>

Let us remark that the targeted resource is a collection. In
this case, the Depth header sets the range of the request.
Possible values are 0 for the resource collection itself, 1
for the collection and its immediate children, and infinity
for the collection and all its children.

XML namespaces are used. Notice the “DAV”
namespace, used for all properties specific to WebDAV.
Two properties are specifically requested in this
example, “author” and “title”. It is also possible to
request all the properties of a resource, by requesting the
special “DAV:allprop” property:
<D:prop xmlns:R="http://doc.domain.org/collec/">
 <D:allprop/>
</D:prop>

The response could be, for instance:
HTTP/1.1 207 Multi-Status
Content-Type: text/xml;
charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8"?>
<D:multistatus xmlns:D="DAV:">
 <D:response>
 <D:href>
 http://doc.domain.org/collec/
 </D:href>
 <D:propstat>
 <D:prop xmlns:R="http://doc.domain.org/collec/">
 <R:author>
 <R:Name>Toto</R:Name>
 </R:author>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 <D:propstat>
 <D:prop>
 <R:title/>
 </D:prop>
 <D:status>HTTP/1.1 403 Forbidden</D:status>
 <D:responsedescription>
 The user does not have access to
 the DingALing property.
 </D:responsedescription>
 </D:propstat>
 </D:response>
 <D:responsedescription>
 Access violation error.
 </D:responsedescription>
</D:multistatus>

Notice the 207 status code, called “Multi-Status”. This
code permits to response several status codes in the same
message. Real status codes are embedded into the XML
block. In our example, the first property requested by the
client is successfully returned, while the second one is
somehow protected, thus its access is denied.

 LOCK/UNLOCK: respectively set/unset a lock on a
single resource or a set of resource. More precisely,
when a LOCK is requested on a resource, a lock token,
unique in time, is generated and returned to the requester.
This lock token must be resent in each request to the
locked resource, through the If header. A lock is a
temporary item and can disappear at any time, and is

neither stored nor restored in case of a server crash or
reboot. A lock can also have a validity, as indicated by
the “DAV:timeout” property. If a client requests a LOCK
method with the If Header containing a valid lock token,
then the LOCK is refreshed and the timeout reset. The
UNLOCK method request must have the Lock-Token
header present, with the correct lock token for the lock to
be deleted. A lock token can be linked to several
resources, but the UNLOCK method destroys the lock
token, and thus the lock on all the resources locked by
this token.

Notice the possibility of locking a non existent resource,
that can be used to forbid the creation of a resource at a
locked URL.

 MKCOL: to create a collection.

RFC2518 also defines the effects of those new methods on
the resources, as well as the effects of pure HTTP methods on
locks, properties and collections.

2.3 Access Control

To control access to a resource, a WebDAV server relies on
two services:

 An authentication service, that must answer the question
“Is the requester really who he claims to be?”

 An authorization service, used on successful
authentication, that must answer the question “Can the
authenticated requester perform a specific action on the
target resource?”

2.3.1 Authentication
As already said, WebDAV completely relies on HTTP
authentication, as described in RFC 2068 and 2069. To sum
up, if a non authenticated request is received by an HTTP
(WebDAV or not) server (arrow 1 of figure 2), the server
sends back a 401 status code (arrow 2). The requester agent,
typically a web browser, then asks its user login/password
information (arrows 3), and resends the initial request with an
extra “Authorization” header containing authentication data
(arrow 4).

User agent Web server

1

2

4

3

Figure 2: Basic HTTP authentication

If the authentication is correct, the access is granted.
Otherwise, another 401 response is sent back to the user.

2.3.2 Authorization
WebDAV (or HTTP for that matter) is just a protocol, and
doesn’t specify the authentication source, i.e. where the
server searches for the correct authentication of a user.

This question also stands for authorization. Once
authenticated, the server has to get the privileges associated
to that particular identity in order to answer the question:
“Has the authenticated entity the ability to perform a
particular method on the resource?”

An internet draft has been approved on last November (2003)
as a wannabe RFC on WebDAV Access Control Protocol [4]
(called thereafter ACP).

All possible requesters, human or computational agent, are
called principals in this proposal. A WebDAV server
supporting those recommendations has to store a
representation of each principal as a WebDAV resource. A
principal resource is then identified by one or several URIs,
but one of them must be an URL that is called
“DAV:principal-URL”. Among the other URIs (grouped in
DAV:alternate-URI-SET) you can find link to external
services, like “ldap://”. A principal can also be a set of
principals, hence forming a group. As groups can be members
of other groups, the notion of group is recursive, which builds
a hierarchy of privileges. The members of a group and the
groups a principal is belonging to can be known (resp.
changed) by retrieving (resp. updating) the “DAV:group-
member-set” and “DAV:group-membership” properties.

Privileges needed to perform a method on a resource are
expressed with XML properties. The most representative
ones are “DAV:read”, ”DAV:write”, “DAV:read-acl”,
“DAV:write-acl”. Each privilege is then defined with regard
to a particular set of HTTP/WebDAV method. For instance,
the “DAV:read” privilege restricts the GET and PROPFIND
methods, but “DAV:read-acl” restricts PROFIND only with
regards to access control related properties.

PROPFIND/PROMATCH are user to get/set Access Control
Property (henceforth ACP) on a resource, just as it is done for
any other property. “DAV:owner” and “DAV:group” ACPs
respectively reflect the principal that “owns” the resource,
and the group of the resource.

The most useful ACP is “DAV:acl”. ACL stands for Access
Control List. An ACL is a list of Access Control Entity
(ACE). Each ACE represents a relation controlled on the
resource between a principal and a privilege. The relation can
be to grant or to deny to the principal the use of the privilege.

To sum up, if you want to restrict the use of a method for a
particular resource and a specific set of principals, you have
to:

 Find the correct privilege associated with the method you
want to restrict, for instance “DAV:unlock” privilege for
the UNLOCK method.

 Define the principals to which the restriction will apply.
You can use a reference (URL) to a principal, or use a
property that itself define a reference to a principal. For
instance, the “DAV:owner” and “DAV:group” properties

define a reference to a principal. It is also possible to
define an inverted selection, meaning “all the principals
who are not …”

 Build an ACE with the previous arguments. Grant or
deny relation must be chosen.

 Add the ACE to the ACL of the resource.

 Set the “DAV:acl” property of the resource with the
ACL built in the previous stage.

For instance, if you want to deny anybody but the owner of a
resource to PUT or PROPPATH the resource, you should
update the “DAV:write” privilege. This can be done with
such a request:
PROPPATCH /path/to/resource HTTP/1.1
Host: doc.domain.org
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8" ?>
<D:propertyupdate xmlns:D="DAV:">
 <D:set>
 <D:prop>
 <D:acl>
 <D:ace>
 <D:principal>
 <D:property><D:owner/></D:property>
 </D:principal>
 <D:grant>
 <D:privilege><D:write/></D:privilege>
 </D:grant>
 </D:ace>
 </D:acl>
 </D:prop>
 </D:set>
 </D:propertyupdate>

3 Architecture

From a user point of view, the feeling of being in a
workspace is essentially due to:

 Having a unique entry point;

 Authenticating only once.

Having a unique entry point is achieved by the ESUP-
Portail web portal (uPortal [5]). This portal gives access to all
the resources of the workspace thanks to embedded
applications (uPortal channels) and hypertext links to stand-
alone applications.

Authenticating only once is achieved within the ESUP-
Portail workspace by its Single Sign-On, i.e. CAS [6, 7],
(Central Authentication Service).

We describe in this part the global architecture of the storage
area. This architecture can seem complex to newbie users,
because modularity has been voluntarily emphasized to ease
the integration into existing environments.

As shown on figure 3, the storage component is made up of:

 A protocol layer, implementing a complete
WebDAV server with ACP understanding;

 A file system abstraction, which allows writing to
the physical storage as to a high-level file-device;

 An authentication module, which controls the
access to storage area at a global level;

 A granting module, which allows or denies actions
at an operation level.

The storage area relies on other components of the digital
workspace:

 The SSO service;

 The user database;

 A grouping service.

The interactions of the WebDAV server with these services
are explained below.

3.1 The filesystem abstraction

The filesystem abstraction allows writing to the physical
storage media as to a high-level file-device. Moreover, the
access of the storage system to the media is supposed to be
full (read/write) and exclusive (the storage system is the only
one to access the media).

In practice, the media can be:

 A local filesystem, of which the formatting type is
understood by the operating system running the
WebDAV server;

 A distant filesystem located on a SAN (Storage Area
Network), mounted by any well-known file-sharing
protocol (NFS, CIFS, etc.).

The only reason of this abstraction layer is portability: we
want system administrators to be able to rely on any existing
media.

3.2 The authentication module

At first, we shortly recall the main principles of CAS. Then

we show how the storage system can be integrated into the
SSO area of the ESUP-Portail digital workspace.

3.2.1 CAS Single Sign-On
CAS, developed by Yale University, was chosen by the
ESUP-Portail consortium for its SSO mechanism for the
following reasons:

 It is an open-source and free product;
 Its security level is very satisfying;
 It allows multi-tier installations without propagating

any password;
 A CAS server is very easy to set up and configure;
 Web applications are very easy to CAS-ify (to set CAS-

compliant).

Single Sign-On is achieved by CAS using the following
techniques:

 Authentication is centralized to a single server, the
only machine receiving user credentials, always through
an encrypted tunnel;

 HTTP redirections are used, from applications to the
authentication server for unauthenticated users, and back
to applications when authenticated;

 Information is passed by the authentication server to
applications during the redirections, thanks to tickets
(cookies and/or CGI parameters).

Readers interested in using CAS may refer to [X] for a
complete explanation on the way CAS is used within the
ESUP-Portail software.

Even if tickets can be used at system-level by some PAM-
compliant services (as shown in [X]), CAS is a web-based
only SSO.

Now, neither human beings nor operating systems can, at the
time we write this article, meet CAS requirements (get tickets
with HTTP requests, perform 30x HTTP redirections, etc.).

In practice, the storage area will have to perform multi-

digital workspace

storage component

SSO trust

granting (ACP)

user
database

protocol (DAV+ACP)

SSO
service

grouping
service

classical

authentication module

security (SSL)

physical
media

filesystem

ACLs
database

Figure 3: Software architecture

purposes authentication:

 SSO authentication for web applications;

 Classical authentication for non-web applications
and operating systems.

Furthermore, some applications, part of the ESUP-Portail
software suite, will be considered as trusted, and thus will
need no authentication (the storage area will always trust the
identity provided by such applications):

3.2.2 SSO authentication
The integration of CAS is quite easy because CAS is
distributed with many client libraries, of which a Java library.

The only problem is to detect correctly the kind of the agent
(client) accessing the storage area. Indeed, only capable web
browser should be redirected to the CAS server when not
authenticated. Others, unable to perform redirections like
operating systems, should use a classical authentication (see
below).

3.2.3 Classical authentication
By “classical”, we mean:

 Directly relying on the user database of the digital
workspace;

 Accepting authentication methods commonly-used
in web programming, such as HTTP basic
authentication (realms), or even personal X509
certificates trusting policies.

This authentication mode will always be forced for clients
that are not able to perform redirections, such as operating
system. In this case, non-authenticated clients receive a 401
Unauthorized error code.

For instance, classical authentication could behave exactly as
the well-known mod_auth_ldap Apache module.

3.3 The granting module

This module is in charge of implementing access control.

For each request, the granting module knows:

 The authenticated user;

 The name of the target resource;

 The action to be performed.

In order to decide whether the action can be performed or not,
the module queries the ACL database, and the grouping
service if the ACL corresponding to the resource uses a group
specification.

4 Current implementation and perspectives

At the time we write this article, ESUP-Portail software v1 is
distributed with restricted features. Full-featured v2 is
planned for late 2004.

4.1 The WebDAV server

With ESUP-Portail software v1, the storage area is for
personal data only, since data sharing between users is not
implemented yet. Each user has full access to his own area,
but no more.

This offers nevertheless a basic answer to roaming users that
want to access personal data from anywhere. It is achieved by
using:

 Apache web server [8];

 Apache mod_dav, to add WebDAV capabilities [9];

 Apache mod_auth_ldap, to add classical
authentication [10].

 CAS mod_cas, to add SSO authentication.

Figure 4: A snapshot of the uPortal WebDAV channel

Using Apache was for us the simplest way to get very quickly
basic features with a reliable solution. However, we knew
from the beginning that it was not scalable, and that
performance issue will appear with intensive use.

The storage system proposed by ESUP-Portail software v2
will be:

 A complete rewriting of v1, in Java;

 Based on Slide [11] libraries;

 Supporting ACP and thus implementing data sharing.

4.2 WebDAV clients

Brought with classical (LDAP) authentication, the WebDAV
server included in ESUP-Portail software v1 can be accessed
with any traditional WebDAV client.

The storage area can be accessed by web browsers (in read-
only mode), once they are CAS-authenticated (thanks to the
mod_cas Apache module).

It is also possible for users to use a web browser and manage
their personal storage area within uPortal (the ESUP-Portail
web portal), thanks to a WebDAV uPortal channel.

The channel is trusted by the WebDAV server (a secret is
shared between the server and the channel, and both run on a
private VLAN).

This uPortal channel will be improved in v2 to bring facilities
to manipulate ACLs, thus allowing data sharing. It will
probably be the most used client, at least until other clients
such as operating systems are ACP-compliant.

References

[1] The ESUP-Portail project, http://www.esup-portail.org

[2] WebDAV, Web-based Distributed Authoring and
Versioning, http://www.webdav.org

[3] INJAC : de l’utilisation de Cocoon et J2EE pour la
gestion du cycle de vie de documents web, in French, P.
Gambarotto & B. Sor, JRES2003, Lille (France),
November 2003, http://www.jres.org.

[4] WebDAV Access Control Protocol,
http://www.webdav.org/acl

[5] uPortal, a free and shared web portal,
http://mis105.mis.udel.edu/ja-sig/uportal/

[6] Central Authentication Service,
http://www.yale.edu/tp/auth/

[7] ESUP-Portail: open-source Single Sign-On with CAS
(Central Authentication Service), P. Aubry, V. Mathieu
& J. Marchal, EUNIS2004, Ljubljana (Slovenia), July
2004, http://eunis.fri.uni-lj.si/EUNIS2004/

[8] The Apache HTTPD server project,
http://httpd.apache.org

[9] Mod_dav: a DAV module for Apache,
http://www.webdav.org/mod_dav/

[10] LDAP authentication module for Apache,
http://www.muquit.com/muquit/software/mod_auth_ldap
/mod_auth_ldap_apache2.html

[11] The Jakarta Slide project, http://jakarta.apache.org/slide/

Acknowledgements

 The members of the JA-SIG group for their work on
uPortal;

 The ESUP-Portail project for their feedback and
contributions;

 Vincent Mathieu and Julien Marchal (University of
Nancy 2) for their precious help with the first release of
the storage area and the WebDAV uPortal channel.

Vitae

 Pierre Gambarotto issued a Ph.D. degree in Computer
Science (Artificial Intelligence) in 2003. He is currently
working as system administrator at ENSEEIHT,
Toulouse, France. He is the leader of the ESUP-Portail
storage group, also involved in CMS.

 Pascal Aubry played with real-time systems at ECP until
1993. In the succeeding years, he worked at IRISA on
the distribution of synchronous programs and received
his Ph.D. in Computer Science in 1997. Currently at
IFSIC, University of Rennes 1, he manages web-projects.
He has been part of the ESUP-Portail project since its
beginning in late 2002, working on web security (SSO,
authorizations) and data storage.

