e I

pp 83-93, San Francisco, California, January 1995.

I

GC: the Data-Flow Graph Format of Synchronous Programming

Pascal Aubry

Thierry Gautier

IRISA/INRIA, EP-ATR team
Campus de Beaulieu, 35042 Rennes Cedex, FRANCE
{Pascal.Aubry, Thierry.Gautier}@irisa.fr

Abstract

Based on an abstraction of the time as a discrete logical time,
the synchronous languages, armed with a strong semantics,
enable the design of safe real-time applications. Some of
them are of imperative style, while others are declarative.
Academic and industrial teams involved in synchronous pro-
gramming defined together three intermediate representa-
tions, on the way to standardization:

e IC, a parallel format of imperative style,
o GC, a parallel format of data-flow style,
e OC, a sequential format to describe automata.

In this paper, we describe more specifically the format GC,
and its links with the synchronous data-flow language Si1G-
NAL. Thanks to the first experimentations, GC reveals itself
as a powerful representation for graph transformations, code
production, optimizations, hardware synthesis, etc.

1 Introduction

As real-time applications become more and more demanding
in terms of safety, complexity, flexibility, modularity, inte-
grability, etc., a new concept for real-time programming has
emerged these last few years: the synchronous programming.
The so-called synchronous languages ESTEREL [7], LUSTRE
[12] and SIGNAL [14] are the pillars of synchronous program-
ming, but other formalisms such as the STATECHARTS [13]
are also closely related. From the user’s point of view, the
main characteristics of these languages are the following:

e a precise mathematical semantics,
e precise notions of modularity and encapsulation,

e formal proof and verification techniques concerning
both “control” (logic, synchronization) and “architec-
ture” (data paths and data dependencies),

Permission to copy without fee all or part of this ma-
terial is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by per-
mission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or spe-
cific permission.

IR'95-1/95 San Francisco, California USA
© 1995 ACM

e automatic generation of (possibly distributed) execu-
table code,

e various target machines, ranging from purely software
ones (C, ApA), dedicated architectures, up to hard-
ware.

Relying on the same principles, the synchronous languages
adopt different styles of programming: while ESTEREL has
an imperative style, LUSTRE and SIGNAL are data-flow lan-
guages (LUSTRE is purely functional and SIGNAL is rela-
tional). It was quickly apparent that a cooperation be-
tween the approaches proposed by these languages should
be highly profitable. This is why it was decided to develop
common intermediate formats that would be the base of the
synchronous software technology. The development of the
formats has several major objectives:

e Establishing a standard for synchronous programming,
the formats would support the largest part of the com-
pilation process of all synchronous languages.

e Developing targeted user interfaces to the formats
should be easy and of low cost.

e Developing targeted code generators for particular ar-
chitectures should also be easy and of low cost.

e Providing tools and services within the synchronous
technology (proofs, simulations, performance evalua-
tion...) could be performed by different companies.

A first public version of the definition of the formats has
been issued in june 1993 [18]. The formats are now a ma-
jor component of the European SYNCHRON Eureka project,
grouping together european companies and research centers
involved in real-time studies and developments. A crucial
issue of this project will be the standardization of the for-
mats.

This paper mainly concentrates on one format, the data-
flow graph format called GC, and its relations to the lan-
guage SIGNAL. However, in section 2, a general view of the
formats is given and their common structures are presented.
The core of the format GC is described in section 3 and
its current situation in the INRIA SIGNAL environment is
detailed in section 4. Finally, section 5 mentions some per-
spectives.

other imperative

other declarative

Signal Lustre
Argos languages on languages
Esterel analysis and
N\ \l optimization tools
™~ . .
link editors IC link editors

generators of sequential code
simulation tools

icoc

verification tools |
generators of interfaces
generators of distributed code

generators of distributed code
silicon compilation
simulation tools

verification tools

generators of interfaces

Figure 1: The Common Base for Synchronous Programming

2 The Common Formats of Synchronous
Languages

First of all, the word “format” used in contrast with “lan-
guage” means that this object will not be accessible to end
users but is rather designed to be handled easily by com-
puters (nevertheless, a readable decompilation such as that
used in this paper can be very useful. ..). The common for-
mats consist of three formats (see 2.1) relying on the same
structures (see 2.2).

2.1 The three formats
The three formats are the following:

IC, a parallel format of imperative style, targeted in par-
ticular to ESTEREL.

GC, aparallel format of data-flow style, targeted in partic-
ular to LUSTRE and SIGNAL. This format will be the
main tool for generating distributed executions.

OC, a sequential format to describe automata. OC is in-
teresting for sequential code generation (FORTRAN, C,
Apa, PLC languages. ..) and for specific tools dedi-
cated to automata.

A general view of the formats, expected translators between
the formats, and planned relations with different tools is de-
picted in figure 1. A Translation from [C to GC-like formats
is described in [16].

2.2 Common structures

This subsection presents the common structures of the three
formats.

2.2.1 Main common features

Main structures: As IC, OC and GC are formats
(compared to languages), their syntax is strongly structured:
it has been designed to be well accepted by automatic anal-
ysers. A program is a list of packages, which are lists
of entities, themselves made of tables of objects (vari-
ous entries of the tables). These structures are shown on
figure 2.

Packages are used as libraries of entities. In this sense,
the package structure does not have any synchronous seman-
tics. Gathering entities into packages allows modularity in
the formats and only affects the addressing mechanism.

Packages are referred to by their identifier; all other ob-
jects are referred to by indices, which avoids complex syn-
tactical search of identifiers.

Comments: Though the formats are not designed to be
read directly by users, the presence of comments, that may
be useful for debugging, is allowed by the syntax. Another
way to put comments in programs is the use of the pragma
%comment : %.

Pragmas: Pragmas are “executable comments”, kept
by tools like translators between formats, and adding in-
formations to objects to which they refer. For example, two
pragmas accepted by any of the three formats are %main:%
and %comment:%. The first one applies to an entity, mean-
ing that this one is to be considered as the main entity of
a program. The second one can be found anywhere in a
program.

Some pragmas are specific to some formats, especially
IC and OC, because they are intermediate code for Es-
TEREL and LUSTRE for quite a long time. To be official,
a pragma and its contextual meanings must be submitted
to all the participants of the SYNCHRON project, and ac-
cepted by them (at least the ones who have to deal with the
pragma if it is specific to a format).

Pragmas appear as the easiest way to make the three
formats evolve, once the main structures will be improved
by the implementation of the first tools.

Addressing mechanism: As said before, the for-
mats, designed for easy automatic analysis, own a very sim-
ple addressing mechanism. There are three ways to refer to
an object:

e with a prefix, if the object belongs to common
(see 2.2.3), IC or GC (see 3.5) predefinitions. The
prefixes are respectively $, $I and $g.

e directly, by the index of the object, if it belongs to the
current entity.

e indirectly, if the object belongs to an other entity. The
other entity has to be imported by the current entity,
by appearing as one entry of the table of importa-
tions. The index, called then coumpound-indez, is
made of the index of the corresponding importation,
followed by the local index of the objet in the imported
entity.

With this mechanism, all the objects can be reached by sim-
ple translations in packages and entities.

entlty 0

package 1 ent|ty 1

entlty p 1

pack age 0

pack age 2

package n-1

Tablel

ieq

Figure 2: The main structures of the three formats

2.2.2 The entities

Entities are made of tables (distinguished one from the other
by a keyword), and each of them can hold a table of importa-
tions. Importations are used in an entity to refer indirectly
to objects declared in other entities.

Entities can be interfaces (in GC programs), local or ex-
ternal nodes (also in GC programs), IC modules (in IC pro-
grams), OC modules (in OC programs) or data blocks.

The only entity that can be used by the three formats
is the data block. Data blocks can hold tables of types,
constants, functions and procedures. Those objects are
only declared, which allows their use (their definitions are
external and specified in another way).

2.2.3 The common predefinitions

Many applications use simple types, built-in in most lan-
guages. Those types are declared in a special data block
called predefined data block. They are $pure (clocks)
(see 3.1), $boolean (logicals), $integer, $string (strings of
characters), $float and $double (extended floats).

The predefined data block also declares constants: $top
(always-present clock), $true and $false (always-present
logicals).

It also provides the most used functions on predefined
types (addition $plus, multiplication $times, logical con-
junction $and, equality $eq, etc.).

This data block does not need to be imported by entities:
common predefinitions are supposed to be known in all the
programs written in any of the three formats. Any entity can
refer to predefined objects without importing the predefined
data block.

3 The Data-Flow Graph Format: GC

GC is a hierarchical representation in the data-flow or block
diagram style of synchronous programs, augmented with ex-
plicit control. The declarative part of a GC code has a syn-
chronous semantics, presented in [6, 18].

An example of GC program is shown on the right side of
figure 5; it is the translation of the data-flow graph obtained
by the compilation of the SIGNAL program CHRONO (shown
in figure 4).

3.1 Flows and clocks

Since GC is a data-flow format, the basic object it deals
with is the flow. A flow is a possibly infinite sequence of

typed values with an explicit associated clock denoting the
instants values are present.

3.2 Structure of a GC code

A GC code is made up of a list of declarations of three kinds
of entities: data blocks, interfaces and nodes.

A node represents a declared sub-graph. It can be in-
stantiated or activated (see 3.4) with the only knowledge of
its interface.

There are two kinds of nodes: local ones and external
ones. External nodes are nodes for which the GC description
is not available. In particular, they can be the GC perspec-
tive of an imperative module. This is to be the link between

GC and IC codes.

3.3 Interfaces

The interface of a node is the summary required for use of
the node as a “black box” in its instantiation context. It is
made up of:

e a data part which describes mainly in form of data
block imports, the types of flows entering and exiting
the node (called interface flows), and, in the form of
flow declarations, the interface flows and their clocks;

e dependencies which enable the specification of a par-
tial communication order among the interface flows
within the same instant;

e assertions and synchronizations which are the
properties expressed on the interface flows.

3.4 Local nodes

Such a node described in the GC format has an interface,
some data and a body.

o As we have seen, the interface of a node describes the
properties which are visible from the outside.

o The data describe:

in the form of data block imports, the types,
constants, functions and procedures used by the
node;

in the form of flow declarations, the local flows
(the knowledge of which is not necessary outside

of the node).

e The body of a node is made up of the following items:

Definitions of values of flows: They express the
computation of values of output (and local) flows
in terms of functions of input (and local) flows.
They are deterministic and obey the referential
transparency principle (their lefthand side can be
substituted for the righthand side in all cases).

The definitions can be equations, node instan-
tiations, procedure calls or activations
of nodes'. We give below a few examples of
definitions?.

Equation: define:X $plus(Y,Z)
specifies that X, Y and Z are synchronous, and
that X; = Y; + Z; at each instant ¢ X is
present.

Node instantiation: set: CLK N($or(X,Y),S)
instantiates the node N at each instant the
clock (pure flow) CLK is present, with the given
parameters (the instantiation of a node cor-
responds to a macro-expansion of the node).

Procedure call: call: CLK P($uminus(S),T)
calls the procedure P at each instant the clock
(pure flow) CLK is present, with the given pa-
rameters.

Activation of node: do: CLK N($eq(X,Y),Z)
activates the node N at each instant the clock
(pure flow) CLK is present, with the given pa-
rameters.

A set of definitions can be seen as a data-flow
graph. The vertices of the graph are the defini-
tions. The edges are implicitly represented by the
identity of indices of connected flows. The depen-
dencies between the input flows and the output
flows of a vertex are conditioned by the clock at
which they are effective. For the vertices that are
equations, these dependencies are induced from
the operators used in the expression of definition;
they are implicit, but they can be explicited in a
table of dependencies (see below). For the ver-
tices which are node instantiations or activations,
the dependencies can be specified in the interface
of the node.

Moreover, explicit dependencies can be added be-
tween definitions: this is a way to specify control
dependencies.

Synchronizations: They specify constraints gov-
erning the semantics of the program. For in-
stance, the following expression
$clkeq(C1,$clkadd(C2,C3))
as an entry of a table of synchronizations specifies
that the clock C1 is the upper bound of the clocks
C2 and C3.

Assertions: They are properties expressed on the
flows of the current node. They are not supposed
to be computed by all tools, and can represent
properties that have to be verified to insure the

I Several syntactic occurrences of instantiation of the same node
produce distinct objects. At the opposite, several syntactic occur-
rences of activation of the same node make reference to the same
object.

2To be more explanatory, indices have been replaced by identifiers.

correctness of an execution. For instance, the fol-
lowing expression

$le (X, #0)

as an entry of a table of assertions, means that the
correctness of the program assumes that X must
always be positive or null. Some code generators
could use assertions to generate suspicious code
(with exception management).

Dependencies: They allow the specification of a par-
tial execution order between communication flows
in any instant. For instance, the following depen-
dency
X -->Y at C
specifies that at each instant of clock C, Y can not
occur before X.

3.5 The GC predefinitions

GC provides, for any of its codes, a predefined data block,
holding the GC predefinitions, that we describe in this
subsection.

3.5.1 The GC types

GC defines, for each type p of the common predefinitions, a
new type $win(u), consisting in a sliding window of values
of type p. It also defines the type $any, used to declare
polymorphic functions.

3.5.2 The GC functions

The first category of GC functions is the set of polymorphic
functions. They are generically declared, using the type
$any. The main ones are given below:

o delay:

$pre(X) is a flow of the type of X, present if and only
if the flow X is present; its value is the previous value
of X.

e initialization:
$fby(I,X) is a flow of the type of X, present if and

only if the flow X is present; it takes the first value of
I, followed by the values of X.

e deterministic merge:

$default (X,Y) is a flow of the same type as the flows
X and Y which is present if and only if the flow X or
the flow Y is present; its value is equal to the value of
X when X is present, and to that of Y in the other case.

e clock sampling:

$when(X,Y) is a flow of the same type as the flow X,
present if and only if the flow X and the flow Y (Y must
have the type $pure) are present; its value is then equal
to the value of X.

The second category of functions offered by the GC pre-
definitions are the functions operating on pure flows (clocks),
defining the control part of a program:

e boolean sampling:

$tt (X) is the flow of type $pure present if and only if
the boolean flow X is present and true.

SIGNAL source)

legend:

SIGNAL

H2 compiler GC

compiler

decompiler

GC

Hierarchical
Conditioned Graph

SIGNAL toGC
translator

1 .

R ' \L N graphical output
o L Hierarch

i N \ y other tools

) \ browser

\

1

-

|

textual ouputs code production

Graphical hierarchy

internal
representation

Figure 3: GC tools at IRISA

clock union:

$clkadd (X,Y) is the flow of type $pure present if and
only if the flow X of type $pure or the flow Y of type
$pure is present.

clock difference:

$clkdiff (X,Y) is the flow of type $pure present if and
only if the flow X of type $pure is present and the flow
Y of type $pure is not present.

clock intersection:

$clkmult (X,Y) is the flow of type $pure present if and
only if the flow X of type $pure and the flow Y of type
$pure are present.

clock value:

$present (X) is the boolean flow on the clock X, the
value of which is always true.

special clock operations:

— $clkeq(X,Y) is the boolean flow present if and
only if the flow X of type $pure or the flow Y of
type $pure is present; its value is true if and only
if the flows X and Y are both present.

$clkimplies(X,Y) is the boolean flow present if
and only if the flow X of type $pure or the flow
Y of type $pure is present; its value is true if and
only if the flow X is present more often than the
flow Y.

$clkmutex (X,Y) is the boolean flow present if and
only if the flow X of type $pure or the flow Y of
type $pure is present; its value is true if and only
if at most one of the flows X or Y are present.

o clock of a flow:

$clock (X) is the flow of type $pure present if and only
if the flow X is present.

87

3.6 Discussion

Data-flow graph formats are widely used, either for opti-
mization purposes of classical languages [1], or as interme-
diate formats of data-flow languages [17]. However, to our
sense, GC is not just another data-flow graph format: it re-
lies on the sound semantical model of synchronous languages
[6, 18] (in particular, this appears in the format through the
explicit notion of clock). Significant consequences of the
synchronous semantics are the following:

o GC programs contain all relevant information to per-
form formal verification;

in particular, GC programs contain all relevant infor-
mation concerning the control, data dependencies, and
the scheduling of computations and communications,
thus facilitating provably correct and optimized code
generation;

GC programs are hierarchically structured as modules,
called nodes, each module has an interface and a body,
the composition of modules is associative and commu-
tative, so the architecture of a GC program can easily
be modified while preserving semantic equivalence;

a GOC interface carries the necessary information to
know how the module should communicate with its
environment, and how the internal scheduling of its
body is reflected onto its interface, and thus provides
an adequate notion of abstraction;

thus GC provides a formal description of all relevant
information to perform provably correct (possibly asyn-
chronous) distributed code generation and separate
compilation.

Another crucial use of flowgraph representations is in ar-
chitectural synthesis [11]. Such representations constitute
intermediate forms, through different transformations, be-
tween descriptions in Hardware Description Languages and
synthesized target architectures. Two main classes of flow-
graphs are distinguished:

e the graphs with disjoint representation of control and

data flows (or CDFQG);

CHRONO

COUNT(59)

COUNT(59)

MINUTES

£ SECONDS

COUNT integer LIM

(] 2v = v §1
RESETE, L | v := { 0 when RESET)default(zv+l) r v
| TOP := when(ZV>=LIM)

Bl

TICK

tsynchro { v, TICK } 4

Figure 4: The program CHRONO

o the data-flow graphs with hybrid representation of con-
trol and data transfers (the format ASCIS [19] for in-
stance).

Thanks to its ability to handle both data and control depen-
dencies, the format GC can join this second category. For
example, GC has already been chosen as the common for-
mat of the ASAR?® project [2, 3], the purpose of which is to
build a multi-formalism framework oriented towards archi-
tectural synthesis. In this project, GC will be the common
denominator of the different formalisms (including VHDL,
the synchronous languages LUSTRE and SIGNAL, the AL-
PHA language for the design of regular architectures) and
high level synthesis tools available in the framework. Some
extensions to the current version of GC are necessary for
that purpose, to handle arrays for example. Moreover, in
the hardware domain, other significant experiences are con-
ducted to design architectures using both synchronous lan-

guages and VHDL [5].

4 GC as a link to SigNAL

In this section, we describe the implementation of the GC
format in the IRISA/INRIA software environment of the
synchronous language SIGNAL.

The first achievement was the design of a good internal
representation, and its associated decompiler. We were then
able to write a translator from SIGNAL to GC, and a GC
compiler. Another tool makes GC readable by browsing
programs and permits quick and easy views of them. The
figure 3 describes these tools.

4.1

A first phase in the development of the formats consisted
in the improvement of their definition. So the internal rep-
resentation had to support modifications easily. Moreover,
since the description capabilities of GC are large, this inter-
nal representation can be quite complex.

We have chosen O.0.P.* and C++ to help us to en-
capsulate the possibly evolving concepts of the formats; as a
matter of fact, this implementation is quite natural, because
of the structure of GC. Some GC objects share properties,
which fits well with inheritance, while some others (tables
for example) are generically defined, thus claim template
definitions.

The package (in the sense of modularity) representing
GC is composed of some forty modules and about one hun-
dred classes.

The internal representation

3ASAR stands for Atelier d’accueil générique pour la Synthése
ARchitecturale.

4Object Oriented Programming.

88

As GC (as well as the other formats, IC and OC) be-
comes nearly unreadable by a normal human brain as soon
as the programs size more than a few pages (in particular
because of the addressing mechanism), the decompiler pro-
duces two different files: the first one is written in GC as
defined by the grammar, and the second one is a readable
version where all the indices have been replaced by the corre-
sponding identifiers. Appendices A and B respectively show
such representations.

We have also implemented a graphical browser, with
which the figure 5 showing a GC code in this paper has
been produced.

4.2 The GC browser

Useful for debugging and producing documents, the browser
[4] becomes rapidly quite indispensable to GC users.

It is based on a template kernel that allows programmers
to build applications showing hierarchies. Two applications
are in use at the moment; they provide facilities for browsing
GC programs and Conditioned Hierarchical Graphs (which
will be called CHGs thereafter) produced by the SIGNAL
compiler (see 4.3).

The principle of the browser is the creation of data struc-
tures pointing to the graph to be shown. The user can, by
this way, travel through the graph, inspecting every detail
(the graph can be displayed down to syntactic level).

The base classes are generic so that nodes can be config-
ured to be attached to local menus, responding to actions
on the graph.

In the future, new features will be added to the exist-
ing ones: multi-windowing, editing (copy/cut/paste) opera-
tions, PostScript output, etc.

4.3 A brief introduction to SIGNAL

SIGNAL [14] is a synchronous real-time language, data-flow
oriented and built around a minimal kernel.

It manipulates signals, which are unbounded series of
typed values, with an implicit associated clock denoting the
instants when values are present. For instance, a signal X
denotes the sequence (Xt)tG]N of data indexed by time-index
t. Signals of a special kind called event are characterized
only by their clock i.e., their presence (they are given the
boolean value true at each occurrence). Given a signal X,
its clock is obtained by the expression event X, resulting in
the event that is present simultaneously with X. Different
signals can have different clocks: one signal can be absent
relatively to the clock of another signal.

The constructs of the language are used to specify the
behavior of systems in an equational style: each equation
states a relation between signals i.e., between their values

Dizplay

Ouit

Search

[®] CHRONO

Display Seargh” Quit @ — %
ROOT QuickeM
am s 1 \

event E 1 /
Integer MINUTES 2

integer SECONDS_3
Integer ZV_13

loc] TOPSEC_6 := when LIM 10 <= 2V_13
lwc) H 27 H := when not LIM 10 <= E¥_13

jiielell 2 packages
19:19 4 [predefinitions]: 2 entities

DATA| FSC, not mangled
DATA| 6C. not mangled

J3i:1+) 4 CHRONO: 5 entities

CHRONO_PARAMETERS, not mangled
TOPSEC_b, not mangled
TOPSEC_b safe: not mangled
CHRONOD, not mangled
4 flows
FLOW) i: Spure E [$hase]
FLOW) o: $integer MINUTES [TOPSEC 6]
FLOW] o: §integer SECONDS [$hase]
Spure TOPSEC_f [TOPSEC_6]
L. NOD| CHRONO safe: mzin node, not msngled
CHRONO

@ 1) 2 flows

FLOW)] $integer 2V [$hase]

W TOPSEC 6 := when LIM 10 <= ZV_13 synchro. . .
GFD

v 13 .=
(=) SECONDS_3

default
0 when TOPSEC_b
EV_13 + 1 when H 27 H

SECONDS 3 § 1

FLOW) $pure H 27 H [H_27_H]

@ E=1) 5 definitions

define:

w] SECONDS
sdefault(. ..}

$when (0, TOPSEC 6)

Svhen ($plus (2V, 1), H_27_H)
define: 2¥ $pre (SECONDS)

define: TOPSEC_ 6 S$tt($le (ELIM, EV))
set: TOPSEC_6 (MINUTES)

define: H 27 _H $tt{inot($le(BLIM, ZV)))

Figure 5: SIGNAL to GC translation

and between their clocks. Systems of equations on sig-
nals are built using the composition construct. When equa-
tions have a deterministic solution depending on inputs, the
resulting program is reactive (i.e., input-driven); in other
cases, correct programs can be demand-driven or control-
driven.

4.3.1 The kernel of SiGNAL

The kernel comprises the following features:

Y := £{X1,...,Xn} functions extended to sequences:
Vk, Yk = f(Xlk, veey Xnk)
Y ;=X $1 delay (shift register)
VE Y = X1
Y := X when B boolean dependent downsampling
Y = X when B is present and true
Y := U default V merge with priority
Y = U when U is present, otherwise Y = ¥
Pl Q composition of processes
P/ X assigning local scope to signal X in process P

Derived processes have been defined from the primitive
operators, providing programming comfort. E.g.,
synchro{X,Y} which constrains signals X and Y to be syn-
chronous, i.e. to have the same clock; when C giving the
clock of the occurrences of C with the value true. A struc-
turing mechanism is proposed in the form of process models,
defined by a name, typed parameters, input and output sig-
nals, a body, and local declarations.

89

4.3.2 An example

The process CHRONO represented in the Figure 4 (obtained
with the graphical interface for SIGNAL) is a simple chronome-
ter that counts the SECONDS, at the clock delivered by the
event-type input signal E, and the MINUTES (the outputs
SECONDS and MINUTES are integer-type signals). It uses two
instances of the process model COUNT, the body of which is
briefly detailed now:

e synchro { V, TICK }; the occurrences of the integer
signal V and that of the event signal TICK are syn-
chronous: V counts the occurrences of TICK;

e ZV := V $1; the integer signal ZV carries, at each one
of its occurrences, the previous value of V; both signals
are implicitly synchronous;

e V := (0 when RESET) default (ZV+1); the signal V
is reset at each occurrence of the event signal RESET;
otherwise, it takes its previous value (carried by ZV)
incremented by 1;

e TOP := when (ZV>=LIM);the event signal TOP and the
occurrences of ZV with the value of the parameter LIM
are synchronous: a TOP is produced every (LIM+1)
TICK.

L primary

analysis checking
D= /
e

GC code Abstract tree

GC objects (tree)

resolution of

the references
transform ions

GC objects (graph)

Figure 6: The compilation process

4.3.3 Compilation

The compiler performs the analysis of the consistency of the
system of equations, and determines whether the synchro-
nization constraints among the signals are verified or not.
For that purpose, it synthesizes the hierarchy of clocks of
the program. This clock calculus [8] relies on the partial or-
der of clocks which corresponds to the inclusion of instants
(a clock being more frequent than another one). To under-
stand this calculus, consider the following situation: H is
the clock of some, say, integer valued signal ZV, and K is
the set of instants where signal ZV exceeds some threshold:
K := when (ZV>=LIM). Then 1/ each instant of K is an in-
stant of H, and 2/ to compute the status of K we must first
know the status of H. Thus we have both that K is less fre-
quent than H and that there is a causality constraint from H
to K. This is denoted by H — K. Successive such downsam-
plings organize clocks into several trees, the collection of
these trees builds the forest of the clocks of the considered
program. If a single tree is obtained, the synchronization
of the considered program easily results and execution is
straightforward.

Finally, since every computation is performed at some
particular clock, computations are attached to their corre-
sponding clock within this forest, hence building a CHG.
The resulting structure is the intermediate level form of the
SIGNAL program and is the basis for all formal manipula-
tions (including optimizations) and code generations [15].

The CHG of the process CHRONO is shown on the left
side of figure 5, using the generic browser. For reasons of
legibility, on this figure, the clock-node TOPSEC_6, produc-
ing the signal MINUTES 2 has been iconified, as well as its
corresponding GC-node (right hand side of the figure). The
overall GC code can be read in appendix A.

4.4 From SIGNAL to GC

The generation of GC code from a SIGNAL program applies
on the CHG created by the compilation. It is a recursive
traversal of the clock hierarchy, as described next.

Each step of the translation is shown by an arrow on
figure 5.

A package corresponds to a program (arrow D).

A clock is a member of the main hierarchy if it has as-
sociated computations or sub-clocks. For each such clock,
an interface and a local node are created in the package (ar-
row). This node is further instantiated in the table of
definitions of its upper clock in the clock hierarchy.

The signals and clocks are transcribed in the tables of
flows of the interface (interface flows and clocks of inter-
face flows, arrow @)) and of the node (other local flows,

arrow @).

90

The sub-clocks (if there are some) are defined in the table
of definitions of the node (arrow ®).

The synchronous data-flow graph associated with the
current clock is represented by equations defining the flows,
and node activations (or calls of procedures) for the SIGNAL
external calls (arrow §)). Dependencies can be implicit or
explicit (in the example, they are let implicit).

Finally, the other definitions produced at the current
clock are instantiations of the nodes corresponding to the
sub-clocks, which are created recursively. The external calls
of the CHG are, depending on the will of the user, tran-
scribed into external GC nodes in the package, or procedures
in a special data block (created in the same package).

4.5 GC compilation

The global process of the compilation of GC is depicted in
figure 6.

An intermediate phase of creation of an abstract tree
from the source code has been introduced to enable the con-
nection with other applications, without running the anal-
yser.

The main problem of the compilation is what we call the
resolution of references, due to the addressing mechanism.
This resolution is necessary to increase the security of tools
applied to GC. This phase consists in attaching to each ob-
ject the objects it may need in operations on the graph. The
main steps are the following:

resolution of the importations: importations are attach-
ed to their corresponding entity.

resolution of the types: windowed types are attached to
the corresponding type.

resolution of the type-references: typed objects (con-
stants, flows, functions, arguments of functions, pa-
rameters of procedures...) are attached to their type.

other resolutions: they consist essentially in the verifica-
tion of all the objects referred to, and in type-matching.

The result of all the resolutions is an internal graph where
the importations, only needed by the addressing mechanism,
can be suppressed. Then, a complete internal representa-
tion of the data-flow graph can be produced. The SPEAK®
project, consisting in the development of a public instanci-
ation of the formats, will allow the implementation of gates
between those graphs and particular representations; by this
way, different tools will apply to GC.

5SPEAK stands for Synchronous Programming Environment Ac-
cess Kernel.

Finally, the data-flow graph produced by the compilation
can be used for transformations, code production, optimiza-
tions, hardware synthesis, etc.

Let us consider optimization aspects for instance. Tradi-
tionally, optimizers create a dependence graph between the
variables of the program to be optimized. However, the de-
pendencies are not conditioned by clocks: for example, in
the program

if (X < 0) then C := A else C := B

the dependencies from A to C and from B to C are considered
in a same way, without taking into account the condition (X
< 0) which, according to its value, inhibits one of them. On
the contrary, in the GC-like equation

define: C $default(A,B)
the dependencies from A to C and from B to C are considered
as effective ones at exclusive and perfectly defined clocks.
Thus, finer optimizations can be made: for example, if A
and B have exclusive computation and availability clocks®, A,
B and C can share the same memory space.

So, very deep optimizations are possible on GC programs
representing CHGs. They concern as well the reduction of
the computation frequency of the flows, as the reduction
of the memory space and the removal of assignments. For
instance, if the graph is rewritten with a sub-sampling of all
the flows by their utilization clock”, the resulting program
is equivalent to the initial one with respect to its external
behavior, but the availability clocks of internal flows, and
by the way, the computation clocks, have been reduced.

The browser, the translator and the compiler presented
here belong to the first generation of tools applying to the
common formats. One of the objectives was to improve GC,
as defined in [18]; the implementation of these tools has
allowed the achievement of a second release of the definition
of GC and revealed GC as a sure and practical format.

This may allow GC to be chosen in the future as a new in-
termediate code for the different phases of the SIGNAL com-
piler.

6 The availability clock is the clock of the flow: it defines the in-
stants at which the clock is present; the computation clock defines
the instants at which the value of the flow is computed (if a flow is
partially defined using its previous value—operator $pre—, it is more
frequently present than it is computed).

"The utilization clock of a flow defines the instants at which the
value of the flow is necessary.

91

5 Conclusion

We have presented the data-flow graph format GC and its
current implementation in the INRIA software environment
of the synchronous language SIGNAL. Recall that GC is one
of the three vertices of the triangle composed by the for-
mats of synchronous programming. A lot of tools will be
progressively available around these formats: translators,
code generators, formal verification tools, etc. 1C, OC and
GC programs can be exchanged by the participants of the
SYNCHRON project via an ftp account; this speeds up the fi-
nalization of the formats and maintains a coherence between
all the teams working around GC.

As a data-flow graph format, GC is also a natural can-
didate to be an intermediate representation for VHDL de-
scriptions and link to hardware synthesis tools.

The formats are being implemented in both industrial
and academic environments of synchronous languages. More-
over, a public instance of the formats will be developed at
INRIA. In parallel, the standardization process will be pur-
sued.

References

[1]

(2]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers—Principles, Techniques and Tools. Wesley—
Addison, 1986.

P. ASAR. Framework and Multi-Formalism: the ASAR
Project. In F.J. Ramming and F.R. Wagner, editors,
Proc. of the 4th International IFIP WG 10.5 Working
Conference on Flectronic Design Automation Frame-
works, Gramado, Brazil, to be published by Chapman
& Hall, 1995, November 1994.

P. ASAR. Towards a multi-formalism framework for
architectural synthesis: the ASAR project. In In-
ternational Workshop on Hardware-Software Codesign,

Codes/CASHE’94, September 1994.

Pascal Aubry and Sylvain Machard. Représenta-
tion graphique d’arbres sous X11R5: Implémentation
générique orientée objet, Applications. IRISA, Rennes.
1994. To appear.

Mohammed Belhadj. Conception d’architectures en u-
tilisant SIGNAL et VHDL. PhD thesis, Université de
Rennes 1, December 1994.

Albert Benveniste, Paul Caspi, Paul Le Guernic, and
Nicolas Halbwachs. Data-Flow Synchronous Lan-
guages. In J.W. de Bakker, W.P. de Roever, and G.
Rozenberg, editors, Lecture Notes in Computer Science
803, Proc. of the REX School/Symposium, Noordwijk-
erhout, Netherlands, pages 1-45, Springer—Verlag, June
1993.

Gérard Berry and Georges Gonthier. The ESTEREL
synchronous programming language: design, seman-
tics, implementation. Science of computer program-

ming, 19(2):87-152, 1992.

Loic Besnard. Compilation de SIGNAL: horloges,
dépendances et environnement. PhD thesis, Université
de Rennes 1, September 1992.

Patricia Bournai, Bruno Chéron, Thierry Gautier,
Bernard Houssais, and Paul Le Guernic. SIGNAL man-
ual. Research report 1969, INRIA Rennes, September
1993.

92

[10]

[11]

[12]

[13]

[14]

[15]

18]

[19]

Bruno Chéron. Transformations syntazxiques de pro-
grammes SIGNAL. PhD thesis, Universit de Rennes 1,
September 1991.

Daniel D. Gajski, Nikil D. Dutt, Allen C-H. Wu, and
Steve Y-L. Lin. High-Level Synthesis — Introduction to
Chip and System Design. Kluwer Academic Publishers,
1992.

Nicolas Halbwachs, Paul Caspi, Paul Raymond, and
Daniel Pilaud. The synchronous data flow program-
ming language LUSTRE. Proceedings of the IFEE,
79(9):1305-1321, September 1991.

David Harel. STATECHARTS: a visual formalism for

complex systems. Science of Computer Programming,
8(3):231-274, 1987.

Paul Le Guernic, Thierry Gautier, Michel Le Borgne,
and Claude Le Maire. Programming real-time ap-
plications with SIGNAL. Proceedings of the IEFE,
79(9):1321-1336, septembre 1991.

Olivier Maffeis and Paul Le Guernic. From SIGNAL
to fine-grain parallel implementations. In Int. Confer-
ence on Parallel Architectures and Compilation Tech-
niques, IFIP A-50, North-Holland, pages 237-246, Au-
gust 1994.

Frédéric Mignard. Compilation du langage Esterel en
systémes d’équations booléennes. PhD thesis, Ecole des
Mines de Paris, October 1994.

S.K. Skedzielewski and M.L. Welcome. Data Flow
Graph Optimization in IF1. In G. Goos and J.
Hartmanis, editors, Lecture Notes in Computer Sci-
ence 201, Proc. of Functional Programming Languages
and Computer Architectures, Nancy, France, pages 17—
34, Springer—Verlag, September 1985.

Projet SYNCHRON. Les formats communs des langages
synchrones. Technical report 157, INRIA, June 1993.
version 0.

J.T.J von Eijndhoven, G.G. de Jong, and L. Stok. The
ASCIS Data-Flow Graph: Semantics and Textual For-
mat. EUT Report 91-E-251, Eindhoven University of
Technology, June 1991.

A An example of GC code

package: 5 CHRONO
0: data: dc:0 CHRONO_PARAMETERS
% nomangling: %
constants: 2
0: LIM_1 $2 value: #59;
1: LIM_2 $2 value: #59;
end: -- constants:
enddata: -—- CHRONO_PARAMETERS
1: interface: gc:0 DEPSEC_10
% nomangling: %

flows: 1
0: o: MINUTES $2 $g0;
end: -- flows:
endinterface: —- DEPSEC_10

2: node: gc:0 DEPSEC_10 safe:
% nomangling: %

import: 2
0: 1;
1: 0y
end: -- import:
flows: 3
0: ZCPT $2 value: $19(#1) $g0;
1: DEPMIN_11 $0 1;
2: H_35_H $0 2;
end: -- flows:

definitions: 4
0: define: 0.0 $g9($g10(#0, 1),
$210($14(0, #1),
2));
1: define: 0 $g11(0.0);
2: define: 1 $g0($11(@1.0, 0));
3: define: 2 $g0($6($11(@1.0, 0)));
end: -- definitions:
endnode: -- node: DEPSEC_10
3: interface: gc:0 CHRONOD
% nomangling: %
flows: 4
0: i: E $0 $g0;
1: o: MINUTES $2 3;
2: o: SECONDES $2 $g0;

3: DEPSEC_10 $0 3;
end: -- flows:
endinterface: —- CHRONO

4: node: gc:0 CHRONO safe: % main: %
% nomangling: %

import: 3
0: 3;
1: 0y
2: 2
end: -- import:
flows: 2
0: ZCPT $2 value: $19(#1) $g0;
1: H_39_H $0 1;
end: -- flows:

definitions: 5

0: define: 0.2 $g9($gl0(#0, 0.3),

$g10($14(0, #1),
1))
define: 0 $g11(0.2);
: define: 0.3 $g0($11(@1.1, 0));
set: 0.3 2(flows: 0.1);
define: 1 $g0($6($11(01.1, 0)));
end: -- definitions:

endnode: -- node: CHRONO

endpackage: —- CHRONO

B W N

B The same example, made

package: 5 CHRONO
0: data: dc:0 CHRONO_PARAMETERS
% nomangling: %
constants: 2
0: LIM_1 $integer value: #59;
1: LIM_2 $integer value: #59;
end: -- constants:
enddata: -- CHRONO_PARAMETERS
1: interface: gc:0 DEPSEC_10
% nomangling: %
flows: 1
0: o: MINUTES $integer $base;
end: -- flows:
endinterface: -- DEPSEC_10
2: node: gc:0 DEPSEC_10 safe:
% nomangling: %
import: 2
0: DEPSEC_10;
1: CHRONO_PARAMETERS;
end: -- import:
flows: 3

readable

0: ZCPT $integer value: $uminus(#1) $base;

1: DEPMIN_11 $pure DEPMIN_11;

2: H_35_H $pure H_35_H;
end: -- flows:
definitions: 4

0: define: MINUTES $default($when(#0, DEPMIN_11),
$when ($plus (ZCPT, #1),

: define: ZCPT $pre(MINUTES);

H_35_H));

1
2: define: DEPMIN_11 $tt($le(@LIM_1, ZCPT));
3

: define: H_35_H $tt($not($le(@LIM_1, ZCPT)));

end: -- definitions:
endnode: -- node: DEPSEC_10
3: interface: gc:0 CHRONO
% nomangling: %
flows: 4
0: i: E $pure $base;

1: o: MINUTES $integer DEPSEC_10;

2: o: SECONDES $integer $base;

3: DEPSEC_10 $pure DEPSEC_10;
end: -- flows:
endinterface: -- CHRONO

4: node: gc:0 CHRONO safe: % main: %
% nomangling: %
import: 3
0: CHRONO;
1: CHRONO_PARAMETERS;
2: DEPSEC_10;

end: -- import:

flows: 2
0: ZCPT $integer value: $uminus(#1) $base;
1: H_39_H $pure H_39_H;

end: -- flows:

definitions: 5

0: define: SECONDES $default($when(#0, DEPSEC_10),
$when($plus (ZCPT, #1),

H_39_H));

1: define: ZCPT $pre(SECONDES);

2: define: DEPSEC_10 $tt($le(@LIM_2, ZCPT));

3: set: DEPSEC_10 DEPSEC_10(flows: MINUTES) ;

4: define: H_39_H $tt($not($le(@LIM_2, ZCPT)));

end: -- definitions:
endnode: -- node: CHRONO
endpackage: —-- CHRONO

93

