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Abstract

The main concern of the research project ASAR is to build a multi-formalism framework oriented
towards Architectural Synthesis. This paper describes the CENTAUR system, used to build this
framework, and the common intermediate data-flow format GC, that will be the common denominator
of the different formalisms and tools available in that framework.
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1 Introduction

This paper describes a research project—mnamed ASAR!'—grouping together six french research teams.
A main concern of this project is Architectural Synthesis Framework and user-interface management.
Most of these teams have been already involved in architectural synthesis for a long time, using distinct
input formalisms and approaches. While independently developed, these approaches are complementary,
and could be used during different stages of a design, or for designing different parts of a system.
The goal of the ASAR project is to build a generic architectural synthesis framework providing:

e the possibility of experimenting various approaches, corresponding to different target architectures
and design description languages,

e multiple associated tools for transformations and synthesis.

This multi-formalism framework is currently under construction. It is built upon the CENTAUR [4]
system, already used by three teams as a common generic software environment for user-interfaces,
formalisms and tools management.

2 ASAR structure

The overall structure of the ASAR framework is sketched in figure 1. The ASAR framework provides a
set of languages and tools oriented towards particular target architectures or domains.

SIGNAL [12] and LUSTRE [8] are data-flow oriented synchronous languages especially designed for real-
time applications. They can be used to specify hardware/software systems at different levels: system level
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and behavioral level for instance. They provide SIGNAL/LUSTRE to C compilers and proof checking tools.
The SIGNAL environment, which includes a mixed graphic/textual program entry, provides a multi-level
VHDL generator prototype (behavioral—that allows the use of synthesis tools such as Synopsys, RTL,
gate level).

TRANSE [7] is an interactive transformational tool based on the LUSTRE language: a circuit is obtained
through successive semantic preserving rewritings of LUSTRE programs, until good operational properties
are obtained.

ALPHA [13] is a functional language based on recurrence equations, for the design of parallel hardware
accelerators; it allows the expression of regular algorithms and/or architectures and the synthesis of
regular architectures by stepwise refinement.

GAUT [14] and Osys [9] are high level synthesis tools from behavioral VHDL descriptions. GAUT is
dedicated to signal processing designs; OsYS is a general purpose prototype tool.

A more complete presentation of these tools can be found in [2].
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Figure 1: Overall structure of ASAR

Three components of ASAR are of main importance:

Centaur The CENTAUR generic environment is the first stone on which we build this common frame-
work, allowing to manipulate different syntaxes (abstract, concrete) and user interfaces in an uniform
way.

An Internal Common Formalism (ICF) In order to federate our different approaches based on
distinct user-formalisms, a sound semantic basis is needed, into which each formalism can be expressed.
In other words, there is an underlying hidden common semantic to our multiple user-formalisms, to be
conveyed by this ICF. This common formalism, a kind of common denominator, need not be human-
readable, and could serve as a common exchange format between different tools.

As our different approaches are all synchronous, a synchronous data-flow semantic seems to be the
most appropriate. It is the reason why the GC formalism is under investigation for the ICF. GC [15] is
a common format for synchronous data-flow languages, developed in the french projet SYNCHRONE.

VHDL The VHDL language, which is now a standard [1], cannot be ignored by any architecture ori-
ented tool. Behavioral VHDL is of course one of the user-input language of ASAR, and structural VHDL
will be one of its possible output format. VHDL is used by the Osys and GAUT synthesis tools.



The main concern of this paper is to describe the framework and the common formalism: the CENTAUR
system is presented in section 3 and the data-flow graph format GC is described in section 4.

3 Centaur: a Distributed Programming Environment

3.1 Centaur

The CENTAUR system [4] is a generic interactive environment parameterized by the syntax and the
semantics of programming languages. When provided with the description of a particular programming
language—including its syntax and semantics—it produces a language-specific environment. With the
help of CENTAUR one can develop tools needed for a programming environment: structure editors, type
checkers, debuggers, interpreters, compilers, various translators and program transformations. These
tools (generated from a formal definition of the language) have graphical user interfaces. For example, a
type checker can generate a special editor with a list of error and warning messages; clicking upon any
item will show the location in the source program that provoked the message.

The CENTAUR system has recently evolved in a set of cooperative tools, whereby we can couple
CENTAUR with existing tools, e.g., an editor, a parser, or a compiler. This has two benefits: the generated
system is no longer monolithic (different generated tools may run on different processors) and, more
importantly, one can integrate existing tools (developed independently of CENTAUR) in the generated
environment. Actually the system can be seen as a toolkit that helps in developing tools for manipulating
programs or other structured objects, as well as a multi-formalism framework providing communication
facilities and an homogenous user-interface to various independent tools.

The cooperation of tools implies communication and the sharing and exchange of data between these
tools. In the following section, we present SOPHTALK [10, 11], an implementation of such a communication
platform.

3.2 Sophtalk

Recent progress in software engineering techniques has consolidated the idea that any tool that performs
a task (editor, button, typechecker, etc.) should be able to operate in isolation, without having to worry
about sources of information it requires or recipients of information it generates [5, 6]. Rather than
converse directly with its comrades, a tool announces an important event by broadcasting an appropriate
message “into the world.” The term multicast is more appropriate since a message only reaches the ears
of those tools that have already declared their interest in such a message. Listening tools may react to
a message, perform some activity, and emit their own messages. If no tools listen to a given message, it
falls on deaf ears.

This event model of communication has been widely used to coordinate communication between
several processes, but the principle of separating a tool’s task from its communication needs also applies
to single process tool interaction. A tool emits a message whenever it requires information, or when
it accomplishes (or fails to accomplish) an important task. “I have finished compiling,” “Someone has
modified this file,” or “The current selection has changed” are examples of significant events. Events may
occur at any moment, so this model of communication is naturally asynchronous, but one may impose
synchronization through design choices.

With SOPHTALK, one may design a system as a network of event-conscious tools. This kind of design
allows developers to add, modify, substitute, or remove tools from the system without disturbing global
behavior.

SOPHTALK implements an event model of communication. System objects, called stnodes, emit mes-
sages when significant events occur, such as the termination of a computation, a request for a service
from another object, error conditions, etc. Messages circulate asynchronously in a network of stnodes.
An stnode’s type determines which messages it will receive; upon reception, an action corresponding to
the message and stnode instance is triggered. An example of stnodes is illustrated by the figure 2.
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Figure 2: Atomic and non-atomic stnodes

3.3 Connecting Centaur with external tools

Some examples

Several projects have experimented with CENTAUR and connecting it to external tools using SOPHTALK.
These include work around scientific computing, symbolic computation, and theorem provers, to name a
few. One of the major achievements is a bi-directional communication between the environment and the
symbolic tools allowing developments of interactive proof building, tactics designing, symbolic computing
etc. In particular, CENTAUR can be used to provide a graphical user interface to a number of tools in the
area of symbolic computation. CENTAUR communicates via a protocol with a number of computer algebra
system (e.g., Maple, Sisyphe, Ulysses), with plotting/surface drawing tools (e.g., Gnuplot, ZicVis), and
with theorem provers (e.g., HOL, Isabelle, Coq). Here one profits from the user interface of CENTAUR,
and, for example, in the case of theorem provers one can take advantage of many techniques from
programming environments: selecting the next subgoal to attack, saving an incomplete proof, browsing
the various theories available, choosing tactics; the CENTAUR technology provides the Virtual Tree
Processor, efficient pretty printing, and the generalized notion of location together with its tools for
building a user interface.

3.4 Connecting tools within ASAR

In the ASAR project, some tools have already been developed under CENTAUR:
e Osys: an environment for VHDL
e TRANSE: for LUSTRE program tranformations
e ALPHA DU CENTAUR: an environment for the ALPHA language.

A structure editor (parser and pretty-printer) has also been developed using CENTAUR for the SIGNAL
language. The ASAR common framework built with CENTAUR allows these various tools to easily com-
municate, and to compare their results obviously. Moreover this common framework facilitates the design
of the Internal Common Formalism ICF'.

Furthermore CENTAUR’s new architecture allowing integration of existing external tools is also useful in
the ASAR context:

e communication between closely related tools as Osys and GauT is facilitated;



e communication with the external SIGNAL compiler makes the existing CENTAUR environment up
(since a syntax editor already exists);

e communication with MATHEMATICA makes the cooperation between the two ALPHA DU CENTAUR’s
implementations (Centaur and Mathematica) easier;

e communication with a graph server allows computed graphs visualization.

Note that the two first communication (between Osys and Gaut, and between the CENTAUR framework
and the SIGNAL compiler) will use the ICF format to transfer data. This Internal Common Format is also
used to translate the framework results into the external tools input languages (structural or synthesisable
VHDL, EDIF, C, etc.).

4 An Internal Common Formalism for ASAR: GC

As said before, it is expected that different tools and formalisms will be used or at least experimented for
the same design, using ASAR. In order to facilitate this multi-formalism approach, the role of the ICF
appears essential:

e as a target for synthesizing and transforming tools: input-L — ICF,

e as a source for translators into languages, like structural VHDL or C, which could be inputs for

other external tools: ICF — output-L,

e as source and target for possible new transforming tools: ICF — ICF.

GC, as a synchronous data-flow format, is presumed to be the ICF for all the participants to the ASAR
project. In this section, we present the place of GC in the common formats of synchronous languages,
its main features and functionalities, and the tools already implemented applying to it.

4.1 The common formats of synchronous languages

GC was defined as one of the common intermediate formats of synchronous languages. The development
of these formats has several major objectives:

e Establishing a standard for synchronous programming, the formats would support the largest part

of the compilation process of all synchronous languages.

e Developing targeted user interfaces to the formats should be easy and of low cost.

e Developing targeted code generators for particular architectures should also be easy and of low cost.

e Providing tools and services within the synchronous technology (proofs, simulations, performance

evaluation. . .) could be performed by different companies.

A first public version of the definition of the formats has been issued in june 1993 [15]. The formats
are now a major component of the European SYNCHRON Eureka project, grouping together european
companies and research centers involved in real-time studies and developments. A crucial issue of this
project will be the standardization of the formats.
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Figure 3: The Common Base for Synchronous Programming



The common formats consist of three formats relying on the same structures :
IC, a parallel format of imperative style.

GC, a parallel format of data-flow style, targeted in particular to LUSTRE and SIGNAL.

OC, a sequential format to describe automata.
A general view of the formats, expected translators between the formats, and planned relations with

different tools is depicted in figure 3.

It should be noted that the word “format”, used in contrast with “language”, means that this object
will not be accessible to end users but is rather designed to be handled easily by computers (neverthless,
a readable decompilation such as that used in this paper can be very useful...).

4.2 Main common features

Main structures: As GCis aformat (compared to a language), its syntax is strongly structured: it has
been designed to be well accepted by automatic analysers. A program is a list of packages, which are
lists of entities, themselves made of tables of objects (various entries of the tables). These structures
are shown in figure 4. Packages do not have any semantics: they are used to put together entities linked
by contextual meanings. They are referred to by their identifier; all other objects are referred to by
indices, which avoids complex syntactical research of identifiers.
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Figure 4: The main structures of the three formats

table q -1

Comments: Though the formats are not designed to be read directly by users, the presence of com-
ments, that may be useful for debugging, is allowed by the grammar. An other way to put comments in
programs is the use of the pragma %comment:%.

Pragmas: Pragmas are “executable comments”, kept by tools like translators between formats, and
adding informations to objects to which they refer. At the moment, two pragmas are accepted by GC
tools (especially the compiler): %main:% and %comment:%. The first one applies to a node (see 4.3),
meaning that this one is to be considered as the principal node of a program. The second one can be
found anywhere in a program. Pragmas appear as the easiest way to make GC evolve, once the main
structures will be improved by the implementation of the first tools.

Addressing mechanism: As said before, the formats, designed for easy automatic analysis, own a
very simple addressing mechanism. There are three ways to refer to an object:

e with a prefix, if the object belongs to common or GC predefinitions (see below). The prefixes are
respectively $ and $g.

e directly, by the index of the object, if it belongs to the current entity.

e indirectly, if the object belongs to an other entity. This other entity has to be imported by the
current entity, by appearing as one entry of the table of importations. The index, called then
coumpound-indez, is made of the index of the corresponding importation, followed by the local
index of the objet in the imported entity.

With this mechanism, all the objects can be reached by simple translations in packages and entities.

Entities: They are made of tables (distinguished one from the other by a keyword), and each of them
can hold a table of importations. Importations are used in an entity to refer indirectly to objects declared
in other entities. GC entities can be data blocks, interfaces, local or external nodes. Data blocks can
hold tables of types, constants, functions and procedures. Those objects are only declared, which allows
their use (their definitions are external and specified in an other way).



Predefinitions: Many applications use simple types, built-in in most languages. Those types are
declared in a special data block called common predefined data block. They are $pure (clocks), $boolean
(logicals), $integer, $string (strings of characters), $float and $double (extended floats).

The predefined data block also declares constants: $top (always-present clock), $true and $false
(always-present logicals). It also provides the most used functions on predefined types. This data block
does not need to be imported by entities: common predefinitions are supposed to be known in all the
programs written in any of the three formats. Any entity can refer to predefined objects without importing

the predefined data block.

4.3 A brief overview of GC

GC is a hierarchical representation in the data-flow or block diagram style of synchronous programs, aug-
mented with explicit control. The declarative part of a GC code has a synchronous semantics, presented
in [15].

Since GC is a data-flow format, the basic object it deals with is the How. A flow is a possibly infinite
sequence of typed values with an explicit associated clock denoting the instants at which values are
present.

Structure of a GC code A GC code is made up of a list of declarations of three kinds of entities:
data blocks, interfaces and nodes. A node represents a declared sub-graph. It can be instanciated or
activated (see below) with the only knowledge of its interface. There are two kinds of nodes: local ones
and external ones. External nodes are nodes for which the GC description is not avaible. In particular,
they can be the GC perspective of an imperative module. This is to be the link between GC and IC
codes.

Interfaces The interface of a node is the summary required for use of the node as a “black box” in its
instanciation context. It is made up of:

e a data part which describes mainly in form of data block imports, the types of flows entering and
exiting the node (called interface flows), and, in the form of flow declarations, the interface flows
and their clocks;

e dependencies which enable the specification of a partial communication order among the interface
flows within the same instant;

e assertions and synchronizations which are the properties expressed on the interface flows.

Local nodes A GC local node has an interface, data and a body.

e As seen before, the interface of a node describes the properties which are visible from the outside.

e The data describe, in the form of data block imports, the types, constants, functions and pro-
cedures used by the node, and in the form of flow declarations, the local flows (the knowledge of
which is not necessary outside of the node).

e The body of a node is made up of the following items:

Definitions of values of flows: They express the computation of values of output (and local)

flows in terms of functions of input (and local) flows. They are deterministic and obey the
referential transparency principal (their lefthand side can substituted for the righthand side in
all cases). The definitions can be equations, node instanciations, procedure calls or activations
of nodes?.
A set of definitions can be seen as a data-flow graph. The vertices of the graph are the
definitions. The edges are implicitly represented by the identity of indices of connected flows.
The dependencies between the input flows and the output flows of a vertex are conditioned by
the clock at which they are effective. For the vertices that are equations, these dependencies
are induced from the operators used in the expression of definition; they are implicit, but
they can be explicited in a table of dependencies (see below). For the vertices which are node
instanciations or activations, the dependencies can be specified in the interface of the node.
Moreover, explicit dependencies can be added between definitions.

2Several syntactic occurrences of instanciation of the same node produce distinct objects. At the opposite, several
syntactic occurrences of activation of the same node make reference to the same object.



Synchronizations: They specify constraints governing the semantics of the program.
Assertions: They are properties expressed on the flows of the current node. They are not supposed

to be computed by all tools.
Dependencies: They allow the specification of a partial execution order between communication

flows in any instant.
An example of GC program is shown on the left side of figure 5; it is the translation of the data-flow

graph obtained by the compilation of a SIGNAL program describing a FIR. An equivalent representation
of the same program expressed in VHDL is shown on the right part of the figure. In this example, loops
have been unfold, as it is done in GAUT for instance.
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Figure 5: GC and VHDL equivalent programs

4.4 GC existing tools

In this subsection, we describe the existing tools applying to GC. They have been implemented in the
TRISA/INRIA software environment of the synchronous language SIGNAL (see figure 6).

An internal representation: All the tools manipulating GC graphs use the same internal object-
oriented representation. As GC (and the other formats) becomes nearly unreadable by a normal human
brain as soon as the programs size more than a few pages (in particular because of the addressing
mechanism), the associated decompiler produces two different files: the first one is written in GC as
defined by the grammar, and the second one is a readable version where all the indices have been replaced
by the corresponding identifiers.

A graphical browser: Useful for debugging and producing documents, the browser [3] becomes rapidly
quite indispensible to GC users. In the future, new features will be added to the existing ones: multi-
windowing, editing (copy/cut/paste) operations, PostScript output. ..

A SIGNAL to GC translator: An essential work of the SIGNAL compiler consists of a clock and de-
pendency calculus; the result is a conditioned hierarchical graph (CHG). The CHG is a clock hierarchy
organized as a forest of trees, where each clock owns a synchronous data-flow graph. The translator,
integrated in the SIGNAL environment as an option of the SIGNAL compiler, builds a GC graph repre-
senting the clock hierarchy. The GC program presented in figure 5 has been produced by the SIGNAL



compiler. The translator is unidirectionnal (from SIGNAL to GC), but the first experimentations reveal
GC as a powerful representation and the format could become in a near future the intermediate code of
the different phases of the SIGNAL compiler.
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Figure 6: GC tools in the SIGNAL environment

A compiler: The global process of the compilation of GC is depicted in figure 7.

An intermediate phase of creation of an abstract tree from the source code has been introduced to
enable the connection with other applications, without running the lexical and syntactical analysers.

The main problem of the compilation is the resolution of references, due to the addressing mecha-
nism. This resolution is necessary to increase the security of tools applied to GC. This phase consists
in attaching to each object the objects it may need in operations on the graph. The main steps are the
following: resolution of the importations, where importations are attached to their corresponding entity,
resolution of the type-references, where typed objects (constants, flows, functions, arguments of functions,
parameters of procedures. .. ) are attached to their type, and last resolutions, which consist essentially in
the verification of all the objects referred to, and in type-matching.

The result of all the resolutions is an internal graph where the importations, only needed by the ad-
dressing mechanism, can be suppressed. The data-flow graph produced can be used for transformations,
code production, optimizations, hardware synthesis, etc.

\L primary resolution of
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Figure 7: Compilation of GC

The browser, the translator and the compiler presented here belong to the first generation of tools
applying to the common formats. The implementation of these tools has allowed the achievement of a
second release of the definition of GC and revealed GC as a sure and practical format.

5 Conclusion and future work

Two main objectives have been defined in this project:
e integrate the different architectural synthesis tools in a generic environment,

e define an internal common formalism (ICF).



The first objective has been obtained with the implementation of Asar.0 which includes the sys-
tem manager of the different tools in the CENTAUR environment. The designer disposes of a coherent
framework, where different architectural synthesis tools co-exist.

For the second point, the data-flow graph format GC, with possible evolutions, seems well suited to
play the important role of inter-communication between formalisms in our framework. Moreover, it will
be used as a link to external tools such as generators of distributed code, formal verification tools, etc.
It has now to be integrated as a possible input or output format in each one of the tools available in the
ASAR project.
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